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In this paper, wewill find in terms of Fourier integrals an exact expression for themagnetic and electric fields generated by an infinite
solenoid where an arbitrary current density J(𝑡) flows. Considering the central region of an infinite solenoid, we will obtain an exact
expression relating the flowing current and the magnetic and electric fields as functions of the time. Being an exact expression, it
will allow us to go beyond the quasistatic approximation. The result can apply in theoretical problems and experimental setups
where the flowing current may change abruptly in time, such as pulsed or stochastic currents.

1. Introduction

In physics and engineering uniform magnetic fields are
ubiquitous. Many studies are devoted about how to generate
them. For this purpose, Helmholtz coils are widely used but
new designs to create uniform fields are present in literature
[1–3]. For example, uniform fields are used in magneto-
hydrodynamic studies [4–8], in ferrofluid flow studies [9],
in new analytical approaches to the studies of micropolar
conducting ferrofluids with applications to new engineering
materials [10, 11], in magnetic resonance spectroscopy [12],
in technological applications [13, 14], in testing devices [15],
or in measuring instruments such as magnetometers. Strictly
related to the previous topic we also consider time-varying
uniform magnetic fields that are widely used in theoretical
and experimental works such as magnetic field susceptibility
tests or biomedical studies [16–18]. The literature on this
topic is quite vast, and we limit ourselves to a few exemplary
applicative papers [19–22]. The typical approach is based on
the quasistatic approximation where the magnetic field H(𝑡)
is given, in the SI system of units, by the flowing current
density J(𝑡), i.e., H(𝑡) ≈ J(𝑡). If we consider arbitrary time-
varying currents, then things start to be a little more com-
plicated. Via Maxwell’s equations, we know that an electric
field is created, according to the Lenz’s law [23, 24]. We focus
on which kind of magnetic and electric fields we have to
consider when the first order approximation is a uniform

magnetic field varying arbitrarily in time.This can be realized
by studying the electromagnetic field generated by an infinite
solenoid where an arbitrary time-varying current density J(𝑡)
flows. To the best of our knowledge, from an analytical point
of view, the generation of an electromagnetic field by an
infinite solenoid is not completely solved except for particular
cases [25, 26]. The knowledge of the central values of the
fieldswill allowus to go beyond the quasistatic approximation
and we may apply the results to actual laboratory setups.
For example, circuits with abruptly changing currents, such
as an impulse current generator circuit, are currently used
in electrical engineering. Another important case, where the
quasistatic approximation loses validity due to the abrupt
changes of the current, is a magnetic field generated by a
stochastic current, a well-known phenomenon since a long
time ([27] and references therein). With respect to these
cases, the first-order approximation of a uniform magnetic
field proportional to the flowing current is not sufficient since
the magnetic and the induced electric fields are related to the
derivatives of the flowing current.

Let us clarify this crucial point considering the set of
Maxwell’s equations [23, 24] in the empty space

∇ × E = −𝜕B𝜕𝑡 , (1)

∇ ×H = 𝜕D𝜕𝑡 , (2)
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∇ ⋅ E = 0, (3)

∇ ⋅ B = 0, (4)

whereE is the electric field,D is the electric displacement field
related to the electric field E via the relationshipD = 𝜀0H, and
B is the magnetic induction, related to the magnetic field H
via the relationship B = 𝜇0H. The constant 𝜀0 = 8.85 × 10−12
farads/meter is the vacuum permittivity in the SI system of
units. The constant 𝜇0 = 4𝜋 × 10−7 = 1.256637061 × 10−6
henries/meter is the vacuum permeability in the SI system of
units.

If we solve iteratively the Maxwell equations we may
assume that a slow time-varying current generates amagnetic
induction field B = B0(𝑡) + 𝛿B and an electric field E = 𝛿E
where B0(𝑡) is the uniform field associated with the current
density, i.e., B0(𝑡) = 𝜇0J(𝑡), and 𝛿B, 𝛿E are the corrections. At
first order, in the vacuum space, for (1) and (2) we have

∇ × 𝛿E = − 𝜕𝜕𝑡B ≈ − 𝜕𝜕𝑡B0 (𝑡) , (5)

∇ ×H = ∇ × 𝛿H = 𝜕𝜕𝑡𝛿D. (6)

From (5) and (6) we deduce that iterating this approach, we
end up into time derivatives of the fields of arbitrary order.
This fact can invalidate the above approach in presence of an
arbitrary time-varying current J(𝑡). Indeed considering the
case when the current changes abruptly, then the iterative
approach would give rise to very large derivatives of the
fields, forcing us to take into account all subsequent derivative
orders. A simple and realistic example is a dichotomously
fluctuating current. The derivatives of the fields would pro-
duce Dirac’s delta functions and its derivatives. These consid-
erations imply that a simple perturbative-iterative approach
is not feasible for the problem that we are studying.

The paper is organized as follows: In Section 2 we will
evaluate an exact expression, in terms of Fourier transform,
for the magnetic and electric fields generated by an arbitrary
current density flowing on the surface of a solenoid. In
Section 3 we will apply the result to a harmonic current
density flowing on the surface of the solenoid obtaining
an exact expression for the fields inside and outside of the
solenoid. In Section 4 we will evaluate the exact expression
of magnetic and electric fields, in time representation, at the
center of the solenoid. The obtained expressions take into
account the correction to the quasistatic approach giving an
analytical expression for the fields generated by an arbitrary
time-varying current density. Finally in Section 5 we will
draw the final remarks.

2. Infinite Solenoid Field

In this section, we will evaluate the exact expression for the
magnetic and electric field generated by an arbitrary current
density flowing on the surface of an infinite solenoid of radius𝑎 (see Figure 1). In presence of arbitrary currents and zero

Figure 1: Solenoid of radius 𝑎. On its surface a uniform current
density J(𝑡) = 𝐼(𝑡)𝜃̂ flows.

charge density, the general solution of (1)-(4) is given in terms
of the potential vector A(x, 𝑡) (Coulomb gauge [24])

A (x, 𝑡) = 𝜇04𝜋 ∫𝑉
J (x󸀠, 𝑡󸀠)󵄨󵄨󵄨󵄨x − x󸀠󵄨󵄨󵄨󵄨 𝑑

3𝑥󸀠 (7)

where 𝑑3𝑥󸀠 is the volume element at x󸀠, the current density J
is a given function of space and time, and the time 𝑡󸀠 is given
by the relation [24]

𝑡󸀠 = 𝑡 − |x|𝑐 . (8)

We may rewrite (7) as

A (x, 𝑡) = 𝜇04𝜋 ∫
∞

−∞
∫
𝑉

J (x󸀠, 𝜔)󵄨󵄨󵄨󵄨x − x󸀠󵄨󵄨󵄨󵄨 exp [−𝚤𝜔𝑡
󸀠] 𝑑𝜔2𝜋 𝑑3𝑥󸀠

= 𝜇04𝜋 ∫
∞

−∞
∫
𝑉

J (x󸀠, 𝜔)󵄨󵄨󵄨󵄨x − x󸀠󵄨󵄨󵄨󵄨 exp[−𝚤𝜔(𝑡 −
󵄨󵄨󵄨󵄨󵄨x − x󸀠󵄨󵄨󵄨󵄨󵄨𝑐 )]

⋅ 𝑑𝜔2𝜋 𝑑3𝑥󸀠.

(9)

Knowing the potential vector we may evaluate the magnetic
induction and electric fields via the equations

B (x, 𝑡) = ∇ × A (x, 𝑡) , (10)

E (x, 𝑡) = − 𝜕𝜕𝑡A (x, 𝑡) . (11)

Considering as system an infinite solenoid, we have two
empty spaces separated by the surface of the solenoid where
the current is flowing. If we consider the Fourier representa-
tion of (7), we may write that

Â (x, 𝜔) = 𝜇04𝜋 ∫𝑉
Ĵ (x, 𝜔)󵄨󵄨󵄨󵄨x − x󸀠󵄨󵄨󵄨󵄨 exp [𝚤

𝜔𝑐 󵄨󵄨󵄨󵄨󵄨x − x󸀠󵄨󵄨󵄨󵄨󵄨] 𝑑3𝑥󸀠 (12)
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where we defined

A (x, 𝑡) = ∫∞
−∞

Â (x, 𝜔) exp [−𝚤𝜔𝑡] 𝑑𝜔2𝜋 , (13)

J (x, 𝑡) = ∫∞
−∞

Ĵ (x, 𝜔) exp [−𝚤𝜔𝑡] 𝑑𝜔2𝜋 . (14)

Taking into account the fact that J is a two-dimensional
current density, we have that 𝑑3𝑥󸀠 󳨀→ 𝑎𝑑𝜃󸀠𝑑𝑧󸀠 where 𝑎 is
the solenoid radius. For the sake of simplicity, we consider
a uniform current density in the angular direction, i.e.,
Ĵ(x, 𝜔) = 𝐼𝜔𝜃̂, and we obtain

Â (x, 𝜔)
= 𝜇0𝑎𝐼𝜔4𝜋 ∫∞

−∞
∫2𝜋
0

exp [𝚤 (𝜔/𝑐) 󵄨󵄨󵄨󵄨󵄨x − x󸀠󵄨󵄨󵄨󵄨󵄨]󵄨󵄨󵄨󵄨x − x󸀠󵄨󵄨󵄨󵄨 𝜃̂
󸀠𝑑𝑧󸀠𝑑𝜃󸀠. (15)

Setting 𝑢 = √𝑎2 + 𝑟2 − 2𝑎𝑟 cos(𝜃 − 𝜃󸀠) we may rewrite (15) as

Â (x, 𝜔)
= 𝜇0𝑎𝐼𝜔4𝜋 ∫∞

−∞
∫2𝜋
0

exp [𝚤 (𝜔/𝑐)√𝑧󸀠2 + 𝑢2]
√𝑧󸀠2 + 𝑢2 𝜃̂

󸀠𝑑𝑧󸀠𝑑𝜃󸀠. (16)

To compact the notation, we define the following quantities:

𝑎∗ = 𝑎𝑐 ,
𝑟∗ = 𝑟𝑐 ,

(17)

𝑢∗ = √𝑎∗2 + 𝑟∗2 − 2𝑎∗𝑟∗ cos (𝜃 − 𝜃󸀠), (18)

and we will dropped the space and frequency dependance
of the field Â(x, 𝜔). Performing the integration on the 𝑧󸀠-
variable and projecting along the 𝑥, 𝑦 axes we obtain
𝐴𝑥 = 𝜇0𝑐𝑎∗𝐼𝜔4
⋅ ∫2𝜋
0
[𝑌0 (|𝜔| 𝑢∗) − 𝚤 sgn (𝜔) 𝐽0 (|𝜔| 𝑢∗)] sin 𝜃󸀠𝑑𝜃󸀠,

(19)

𝐴𝑦 = −𝜇0𝑐𝑎∗𝐼𝜔4
⋅ ∫2𝜋
0
[𝑌0 (|𝜔| 𝑢∗) − 𝚤 sgn (𝜔) 𝐽0 (|𝜔| 𝑢∗)]

⋅ cos 𝜃󸀠𝑑𝜃󸀠,
(20)

where 𝐽0(𝑥) and 𝑌0(𝑥) are the zero order Bessel functions
of the first and second kind, respectively, while sgn(𝜔) is

the function that gives the sign of 𝜔. Using Graf ’s addition
theorem for Bessel functions [28, 29] we have

exp [𝚤]𝜓]𝑍] (𝑘𝑢∗)
= ∞∑
𝑛=−∞

𝐽𝑛 (𝑘𝑟<) 𝑍]+𝑛 (𝑘𝑟>) exp [𝚤𝑛𝜙] ,
𝜙 ≡ 𝜃 − 𝜃󸀠,

(21)

exp [2𝚤𝜓] = 𝑟∗ − 𝑎∗ exp [−𝚤𝜙]𝑟∗ − 𝑎∗ exp [𝚤𝜙] , 0 < 𝜓 < 𝜋2 , (22)

where 𝑘 is an arbitrary complex number, 𝑟< = min(𝑎∗, 𝑟∗)
and 𝑟> = max(𝑎∗, 𝑟∗), 𝑍](𝑥) is any of the Bessel functions𝐽](𝑥), 𝑌](𝑥), 𝐼](𝑥), 𝐾](𝑥) or the Hankel functions of the first
and second kind, 𝐻(1)] (𝑥) and 𝐻(2)] (𝑥), respectively. Let us
focus on the solution inside to the solenoid. Then 𝑟< = 𝑟∗
and 𝑟> = 𝑎∗; thus we have
𝐴𝑥 = 𝜇0𝑐𝑎∗𝐼𝜔𝜋2 × [𝑌1 (|𝜔| 𝑎∗) − 𝚤 sgn (𝜔) 𝐽1 (|𝜔| 𝑎∗)]
⋅ 𝐽1 (|𝜔| 𝑟∗) sin 𝜃,

(23)

𝐴𝑦 = −𝜇0𝑐𝑎∗𝐼𝜔𝜋2
× [𝑌1 (|𝜔| 𝑎∗) − 𝚤 sgn (𝜔) 𝐽1 (|𝜔| 𝑎∗)] 𝐽1 (|𝜔| 𝑟∗)
⋅ cos 𝜃,

(24)

or in polar coordinates

𝐴𝜃 = −𝜇0𝑐𝑎∗𝐼𝜔𝜋2 [𝑌1 (|𝜔| 𝑎∗) − 𝚤 sgn (𝜔) 𝐽1 (|𝜔| 𝑎∗)]
⋅ 𝐽1 (|𝜔| 𝑟∗) .

(25)

Exploiting the relationship B = 𝜇0H we obtain the magnetic
field in the inner region of the solenoid via the Fourier
transform of (10), i.e.,

𝐻̂𝑖𝑛𝑧 = 1𝜇0𝐵𝑖𝑛𝑧 =
1𝜇0𝑟
𝜕𝜕𝑟 (𝑟𝐴𝜃)

= −𝐼𝜔𝜋2 |𝜔| 𝑎∗
× [𝑌1 (|𝜔| 𝑎∗) − 𝚤 sgn (𝜔) 𝐽1 (|𝜔| 𝑎∗)] 𝐽0 (𝜔𝑟∗) .

(26)

Similarly the electric field, via the Fourier transform of (11), is

𝐸𝑖𝑛𝜃 = 𝚤𝜔𝐴𝜃
= −𝚤𝜇0𝑐𝐼𝜔𝜋2 |𝜔| 𝑎∗
× [𝑌1 (|𝜔| 𝑎∗) − 𝚤 sgn (𝜔) 𝐽1 (|𝜔| 𝑎∗)] 𝐽1 (𝜔𝑟∗) .

(27)
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Going back to the time representation we may write

𝐻𝑖𝑛𝑧 (𝑟, 𝑡) = −𝑎∗𝜋2 ∫
∞

−∞

𝑑𝜔2𝜋 𝐼𝜔 |𝜔|
⋅ [𝑌1 (|𝜔| 𝑎∗) − 𝚤 sgn (𝜔) 𝐽1 (|𝜔| 𝑎∗)] 𝐽0 (𝜔𝑟∗)
⋅ exp [−𝚤𝜔𝑡] ,

(28)

𝐸𝑖𝑛𝜃 (𝑟, 𝑡) = −𝚤𝜇0𝑐𝑎∗𝜋2 ∫∞
−∞

𝑑𝜔2𝜋 𝐼𝜔 |𝜔|
⋅ [𝑌1 (|𝜔| 𝑎∗) − 𝚤 sgn (𝜔) 𝐽1 (|𝜔| 𝑎∗)] 𝐽1 (𝜔𝑟∗)
⋅ exp [−𝚤𝜔𝑡] .

(29)

In a similar way, we can evaluate the magnetic and electric
fields in the region outside of the solenoid. In this case we
find

𝐻𝑜𝑢𝑡𝑧 (𝑟, 𝑡) = −𝑎∗𝜋2 ∫
∞

−∞

𝑑𝜔2𝜋 exp [−𝚤𝜔𝑡] 𝐼𝜔 |𝜔|
× [𝐽1 (|𝜔| 𝑎∗) 𝑌0 (|𝜔| 𝑟∗)
− 𝚤 sgn (𝜔) 𝐽1 (|𝜔| 𝑎∗) 𝐽0 (𝜔𝑟∗)] ,

(30)

𝐸𝑜𝑢𝑡𝜃 (𝑟, 𝑡) = −𝚤𝜇0𝑐𝑎∗𝜋2 ∫∞
−∞

𝑑𝜔2𝜋 exp [−𝚤𝜔𝑡] 𝐼𝜔𝜔
× [𝐽1 (|𝜔| 𝑎∗) 𝑌1 (|𝜔| 𝑟∗)
− 𝚤 sgn (𝜔) 𝐽1 (|𝜔| 𝑎∗) 𝐽1 (|𝜔| 𝑟∗)] .

(31)

3. Exact Case: Harmonic Current Density

As an exact example, we will consider the case of a harmonic
current density flowing on the solenoid surface along the
angular direction 𝜃̂. We assume that

J (𝑡) = 𝐼 (𝑡) 𝜃̂ = 𝐼0 cos (𝜔0𝑡 + 𝜙) 𝜃̂. (32)

Taking the Fourier transform we have

𝐼𝜔
= 𝐼0𝜋 [exp [𝚤𝜙] 𝛿 (𝜔 + 𝜔0) + exp [−𝚤𝜙] 𝛿 (𝜔 − 𝜔0)] . (33)

From (28) and (29) it follows that

𝐻𝑖𝑛𝑧 (𝑟, 𝑡)
= −𝜋2 𝐼0𝜔0𝑎∗𝑌1 (𝜔0𝑎∗) 𝐽0 (𝜔0𝑟∗) cos (𝜔0𝑡 + 𝜙)
+ 𝜋2 𝐼0𝜔0𝑎∗𝐽1 (𝜔0𝑎∗) 𝐽0 (𝜔0𝑟∗) sin (𝜔0𝑡 + 𝜙) .

(34)

𝐸𝑖𝑛𝜃 (𝑟, 𝑡)
= −𝜇0𝑐𝜋2 𝐼0𝜔0𝑎∗𝑌1 (𝜔0𝑎∗) 𝐽1 (𝜔0𝑟∗) sin (𝜔0𝑡 + 𝜙)
− 𝜇0𝑐𝑎∗𝜋2 𝐼0𝜔0𝐽1 (𝜔0𝑎∗) 𝐽1 (𝜔0𝑟∗) cos (𝜔0𝑡 + 𝜙) .

(35)

We shall focus now on the internal magnetic field, i.e.,𝐻𝑖𝑛𝑧 (𝑟, 𝑡). For 𝜔0𝑎∗ ≪ 1 and consequently 𝜔0𝑟∗ ≪ 1, we may
approximate the Bessel functions as

𝐽0 (𝜔0𝑟∗) ≈ 1,
𝑌1 (𝜔0𝑎∗) ≈ − 2𝜋𝜔0𝑎∗ ,
𝐽1 (𝜔0𝑎∗) ≈ 𝜔0𝑎∗2 .

(36)

Thus the current density 𝐼(𝑡) = 𝐼0cos(𝜔0𝑡 + 𝜙) is a slow time-
varying function and we recover the well-known result

𝐻𝑖𝑛𝑧 (𝑟, 𝑡) ≈ 𝐼0 cos (𝜔0𝑡 + 𝜙) , (37)

𝐸𝑖𝑛𝜃 (𝑟, 𝑡) ≈ 𝑟∗2 𝜇0𝑐𝜔0𝐼0 sin (𝜔0𝑡 + 𝜙)
= − 𝑟2 𝜕𝜕𝑡𝐵𝑖𝑛𝑧 (𝑟, 𝑡) .

(38)

In the opposite limit, i.e., 𝜔0𝑎∗ ≫ 1, we may distinguish two
cases: on the axis and on the solenoid surface. On the axis we
have

𝐻𝑖𝑛𝑧 (0, 𝑡) = −𝐼0√𝜋𝜔0𝑎∗2 sin [𝜔0 (𝑡 − 𝑎∗) + 𝜙 − 𝜋4 ] (39)

while on the solenoid surface we have

𝐻𝑖𝑛𝑧 (𝑎, 𝑡)
= −𝐼0√𝜋𝜔0𝑎∗2 sin [𝜔0 (𝑡 − 𝑎∗) + 𝜙 − 𝜋4 ] 𝐽0 (𝜔0𝑎∗)
≈ −𝐼0 sin [𝜔0 (𝑡 − 𝑎∗) + 𝜙 − 𝜋4 ] cos (𝜔0𝑎∗ − 𝜋4 ) .

(40)

As we can infer from (34), there are frequencies at which the
magnetic field evaluated on the surface vanishes (see Figures
2 and 3). Such frequencies are given by the zeros of 𝐽0(𝜔0𝑎∗)
that in the high-frequency limit are

𝜔0 (𝑛) 𝑎∗ = 𝜋4 + (2𝑛 + 1) 𝜋2 , for 𝑛 ≫ 1. (41)

On the other hand the amplitude of the central value of the
magnetic field grows as√𝜔0𝑎∗. In a similar way, from (35)we
deduce that the frequencies, at which the electric field𝐸𝑖𝑛𝜃 (𝑟, 𝑡)
evaluated on the surface vanishes, are given by the zero of𝐽1(𝜔0𝑎∗), i.e.,

𝜔0 (𝑛) 𝑎∗ = −𝜋4 + (2𝑛 + 1) 𝜋2 , for 𝑛 ≫ 1. (42)
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Analogous calculation are performed for the external
fields. Using (30) and (31), for the magnetic and electric fields
we have

𝐻𝑜𝑢𝑡𝑧 (𝑟, 𝑡) = −𝑎∗𝜋2 𝐼0𝜔0𝐽1 (𝜔0𝑎∗)
⋅ [𝑌0 (𝜔0𝑟∗) cos (𝜔0𝑡 + 𝜙)
− 𝐽0 (𝜔0𝑟∗) sin (𝜔0𝑡 + 𝜙)] ,

(43)

𝐸𝑜𝑢𝑡𝜃 (𝑟, 𝑡) = −𝜇0𝑐𝑎∗𝜋2 𝐼0𝜔0𝐽1 (𝜔0𝑎∗)
⋅ [𝑌1 (𝜔0𝑟∗) sin (𝜔0𝑡 + 𝜙)
+ 𝐽1 (𝜔0𝑟∗) cos (𝜔0𝑡 + 𝜙)] .

(44)

An easy check shows that for 𝜔0𝑎∗ ≪ 1 we recover the qua-
sistatic limit𝐻𝑜𝑢𝑡𝑧 (𝑟, 𝑡), 𝐸𝑜𝑢𝑡𝜃 (𝑟, 𝑡) ≈ 0. Finally using the Bessel
function identity 𝑌1(𝑧)𝐽0(𝑧) − 𝑌0(𝑧)𝐽1(𝑧) = −2/𝜋𝑧, it is
straightforward to verify thatH satisfies to the boundary con-
dition

𝐻𝑖𝑛𝑧 (𝑎, 𝑡) − 𝐻𝑜𝑢𝑡𝑧 (𝑎, 𝑡) = 𝐼0 cos (𝜔0𝑡 + 𝜙) = 𝐼 (𝑡) . (45)

A remarkable property of (43) and (44) is that there is
a series of frequencies at which both magnetic and electric
fields vanish outside of the solenoid. Indeed having the ex-
pression of the fields the common factor 𝐽1(𝜔0𝑎∗), we find
that the outside fields vanish when

𝐽1 (𝜔0𝑎∗) = 0, 󳨐⇒
𝜔0 (𝑛) 𝑎∗ ≈ (2𝑛 + 1) 𝜋2 − 𝜋4 , for 𝑛 ≫ 1. (46)

The first exact frequency at which the fields 𝐻𝑜𝑢𝑡𝑧 (𝑟, 𝑡) and𝐸𝑜𝑢𝑡𝜃 (𝑟, 𝑡) vanish is given by the first zero of 𝐽1(𝑧) correspond-
ing to 𝜔0(1)𝑎∗ = 3.83171. The results are shown visually in
Figures 4 and 5.

4. Axial Fields

In this section, wewill evaluate themagnetic and electric field
at the center of the solenoid.The central region of the solenoid
is the region where the magnetic field can be considered
uniform. Being evaluated using an exact expression, we
will have the field values that are consistent with Maxwell’s
equations. For the sake of simplicity, we will set the origin of
time at 𝑡 = 0. In other words, there are no currents flowing
for 𝑡 < 0. We will find a generic expression for the fieldH and
E. To do that we consider (28) evaluated at 𝑟 = 0. We have

𝐻𝑖𝑛𝑧 (0, 𝑡) = −𝑎∗𝜋2 ∫
∞

−∞

𝑑𝜔2𝜋 𝐼𝜔 |𝜔|
⋅ [𝑌1 (|𝜔| 𝑎∗) − 𝚤𝐽1 (𝜔𝑎∗)] exp [−𝚤𝜔𝑡] , 𝑡 > 0.

(47)

Applying the properties of Fourier transform we may rewrite
the above expression as

𝐻𝑖𝑛𝑧 (0, 𝑡) = −𝑎∗𝜋2 ∫
∞

−∞
𝐼 (𝑡 − 𝑡󸀠)𝐺 (𝑡󸀠) 𝑑𝑡󸀠 (48)
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Figure 2: Plot of the magnetic field 𝐻𝑖𝑛𝑧 (𝑟, 𝑡) (see (34)) as function
of the radial distance from the solenoid center 𝑟 = √𝑥2 + 𝑦2. The
parameters 𝐼0 and 𝑎∗ have been set equal to the unit, while the field
is evaluated at 𝜔0𝑡 = 𝜋/4 and 𝜔0 = 2.4048, i.e., the first zero of𝐽0(𝑧). At this frequency the magnetic field vanishes on the solenoid
surface.

Hin
z

−1.0

−0.1

0.1

0.2

0.3

−1.0
−0.5

−0.50.0

0.0

0.00.5

0.5
1.0

1.0

y

x

Figure 3: Plot of the magnetic field 𝐻𝑖𝑛𝑧 (𝑟, 𝑡) (see (34)) as function
of the radial distance from the solenoid center 𝑟 = √𝑥2 + 𝑦2. The
parameters 𝐼0 and 𝑎∗ have been set equal to the unit, while the field
is evaluated at 𝜔0𝑡 = 𝜋/4 and 𝜔0 = 5.5201, i.e., the second zero of𝐽0(𝑧). At this frequency the magnetic field vanishes on the solenoid
surface.

where, exploiting the symmetries of the integral, we define
the function 𝐺(𝑡) as
𝐺 (𝑡)
= ∫∞
0
𝜔 [𝑌1 (𝜔𝑎∗) cos𝜔𝑡 − 𝐽1 (𝜔𝑎∗) sin𝜔𝑡] 𝑑𝜔𝜋 .

(49)

The integral can be solved analytically [29] and gives

𝐺 (𝑡) = − 2𝜋𝑎∗ 𝜕𝜕𝑡 [ 𝑡√𝑡2 − 𝑎∗2 𝜃 (𝑡 − 𝑎∗)] (50)

where 𝜃(𝑧) is the step function. If 𝐼(𝑡− 𝑡󸀠) admits a finite limit
for 𝑡󸀠 󳨀→ ∞ we can integrate by parts (48); otherwise we
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Figure 4: Plot of the magnetic field 𝐻𝑖𝑛𝑧 (𝑟, 𝑡) (see (34)) as function
of the radial distance from the solenoid center 𝑟 = √𝑥2 + 𝑦2. The
parameters 𝐼0 and 𝑎∗ have been set equal to the unit, while the field
is evaluated at 𝜔0𝑡 = 𝜋/4 with 𝜔0 = 3.8320, i.e., the first zero of𝐽1(𝑧). At this frequency, both the magnetic and electric fields vanish
outside of the solenoid.
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Figure 5: Plot of 𝐸𝑖𝑛𝜃 (𝑟, 𝑡)/(𝜇0𝑐) (see (35)) as function of the radial
distance from the solenoid center 𝑟 = √𝑥2 + 𝑦2. The parameters 𝐼0
and 𝑎∗ have been set equal to the unit, while the field is evaluated
at 𝜔0𝑡 = 𝜋/4 with 𝜔0 = 3.8320, i.e., the first zero of 𝐽1(𝑧). At this
frequency, both the magnetic and electric fields vanish outside of
the solenoid.

must consider carefully its expression. With the assumption
that such a limit exists then we may rewrite (48) as

𝐻𝑖𝑛𝑧 (0, 𝑡)
= 𝐼∞ (𝑡)
+ ∫∞
−∞
𝐼󸀠 (𝑡 − 𝑡󸀠) 𝑡󸀠√𝑡󸀠2 − 𝑎∗2 𝜃 (𝑡󸀠 − 𝑎∗) 𝑑𝑡󸀠

(51)

where 𝐼∞(𝑡) is the limit for 𝑡󸀠 󳨀→ ∞ of 𝐼(𝑡 − 𝑡󸀠) and 𝐼󸀠(𝑧) is
the derivative of the current 𝐼(𝑧). As first example we turn on
a constant current at 𝑡 = 0, i.e.,

J (𝑡) = 𝐼 (𝑡) 𝜃̂ = 𝐼0𝜃 (𝑡) 𝜃̂. (52)

Applying (51) we obtain

𝐻𝑖𝑛𝑧 (0, 𝑡)
= 𝐼0𝜃 (𝑡 − 𝑡󸀠) 𝑡

󸀠𝜃 (𝑡󸀠 − 𝑎∗)
√𝑡󸀠2 − 𝑎∗2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∞

−∞

+ ∫∞
−∞
𝐼0𝛿 (𝑡 − 𝑡󸀠) 𝑡󸀠√𝑡󸀠2 − 𝑎∗2 𝜃 (𝑡󸀠 − 𝑎∗) 𝑑𝑡󸀠

= 𝐼0 𝑡√𝑡2 − 𝑎∗2 𝜃 (𝑡 − 𝑎∗) .

(53)

The two step functions make vanish the first term on the right
side of (53). It is straightforward to obtain the well-known
result 𝐻𝑖𝑛𝑧 (0, 𝑡) = 𝐼0 for 𝑡 ≫ 𝑎∗. Next, we consider two cases
where the corrections to the quasistatic approximation play
an important role. For this purpose we study the case of a
strong current pulse that we can approximate with a Dirac’s
delta, i.e.,

J (𝑡) = 𝐼 (𝑡) 𝜃̂ = 𝑇𝐼0𝛿 (𝑡 − 𝜏) 𝜃̂ (54)

where 𝐼0 is a constant with current density dimension and 𝑇
is a constant with the time dimension. Applying directly (48)
we obtain

𝐻𝑖𝑛𝑧 (0, 𝑡) = 𝑇𝐼0[[
[
(𝑡 − 𝜏) 𝛿 (𝑡 − 𝜏 − 𝑎∗)
√(𝑡 − 𝜏)2 − 𝑎∗2

− 𝑎∗2𝜃 (𝑡 − 𝜏 − 𝑎∗)[(𝑡 − 𝜏)2 − 𝑎∗2]3/2
]]
]
.

(55)

The first term represents the pulse arriving at the center of the
solenoid while the correction shows that, after the pulse, still
it is present a magnetic field decaying as 𝑡−3. Finally we will
study a solenoid where a sinusoidal current is switched on at
t=0

J (𝑡) = 𝐼 (𝑡) 𝜃̂ = 𝐼0𝜃 (𝑡) sin𝜔0𝑡𝜃̂. (56)

After straightforward algebra we obtain

𝐻𝑖𝑛𝑧 (0, 𝑡) = 𝜔0𝐼0∫𝑡
𝑎∗
cos [𝜔0 (𝑡 − 𝑡󸀠)] 𝑡󸀠√𝑡󸀠2 − 𝑎∗2𝑑𝑡󸀠. (57)

In the asymptotic limit, 𝑡 󳨀→ ∞, we have

𝐻𝑖𝑛𝑧 (0, 𝑡) ≈ −𝜋𝜔0𝑎∗𝐼02 [𝐽1 (𝜔0𝑎∗) cos (𝜔0𝑡)
+ 𝑌1 (𝜔0𝑎∗) sin (𝜔0𝑡)] .

(58)

Taking the limit for 𝜔0𝑎∗ ≪ 1 we recover the well-known
quasistatic result

𝐻𝑖𝑛𝑧 (0, 𝑡) ≈ 𝐼0 sin (𝜔0𝑡) = 𝐼 (𝑡) . (59)
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Taking the limit for 𝜔0𝑎∗ ≫ 1 we obtain the result

𝐻𝑖𝑛𝑧 (0, 𝑡) ≈ √𝜋𝜔0𝑎∗2 𝐼0 sin [𝜔0 (𝑡 − 𝑎∗) + 𝜋4 ] ̸= 𝐼 (𝑡) . (60)

The last two examples show that if we deal with fields that
are not quasistatic, we can still consider a region where the
magnetic field is uniform. On the other hand, to be consistent
with Maxwell’s equations we have to use the expression in
(51). From expression (58) we infer that we may change the
phase between flowing current and magnetic field. Selecting,
for example, the frequency in such a way that 𝑌1(𝜔0𝑎∗) = 0
we have a magnetic field dephased of 𝜋/2 with respect to the
flowing current. In the quasistatic regimeH = Jwhile for high
frequencies the amplitude of the magnetic field grows as√𝜔0
and magnetic field and current density are not anymore in
phase (see Figures 6 and 7). With respect to the evaluation of
the electric field expression near the center of the solenoid, we
may proceed in a similar way such as for the magnetic field.
At the first nonvanishing order, we have

𝐸𝑖𝑛𝜃 (𝑟, 𝑡) ≈ −𝚤𝜇0𝑐𝑎∗𝑟∗𝜋2 ∫∞
−∞

𝑑𝜔2𝜋 𝐼𝜔 |𝜔|
⋅ 𝜔 [𝑌1 (|𝜔| 𝑎∗) − 𝚤𝐽1 (𝜔𝑎)] exp [−𝚤𝜔𝑡] .

(61)

In the time representation we have

𝐸𝑖𝑛𝜃 (𝑟, 𝑡) = − 𝑟2 𝜕𝜕𝑡𝐵𝑖𝑛𝑧 (0, 𝑡)
= −𝜇0𝑐𝑎∗𝑟∗𝜋4 ∫∞

−∞
𝐼󸀠 (𝑡 − 𝑡󸀠)𝐺 (𝑡󸀠) 𝑑𝑡󸀠.

(62)

Formally (62) coincides with the integration in cylindrical
coordinates of (5), as in the quasistatic approximation, but
the magnetic field is given by (48) that in general is not
proportional to the flowing current as shown by the two last
examples of this section.

5. Results and Discussion

In this paper, we found an exact expression for the magnetic
field generated by an infinite solenoid where an arbitrary
current density J(𝑡) is flowing. It has been shown that abrupt
changes in time of the flowing current generate magnetic and
electric fields that, in general, differ from the fields generated
by the quasistatic approximation. This result takes in account
all the corrections to the quasistatic approximation, so giving
an exact expression for the uniform magnetic field generated
by an arbitrary time-dependent current. Consequently, also
the exact expression for the electric field associated with the
time-varying magnetic field is given. The fields so found
are consistent with Maxwell’s equation at all time derivative
order. This result can be used in several relevant applications
where the current abruptly changes in time, such as pulsed
current or stochastic fluctuation of the current value.
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Figure 6: Plot of 𝐼(𝑡) = 𝐼0𝜃(𝑡) sin𝜔0𝑡, red line (see (56)), and𝐻𝑖𝑛𝑧 (0, 𝑡), blue line (see (58)) as functions of the time 𝑡. We set 𝐼0 = 1
and 𝜔0𝑎∗ = 2.1971, i.e., the first zero of 𝑌1(𝑧). At this frequency the
magnetic field and the current are dephased by 𝜋/2.
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Figure 7: Plot of 𝐼(𝑡) = 𝐼0𝜃(𝑡) sin𝜔0𝑡, red line (see (56)), and𝐻𝑖𝑛𝑧 (0, 𝑡), blue line (see (58)) as functions of the time 𝑡. We set 𝐼0 = 1
and 𝜔0𝑎∗ = 2.1971√3. At this frequency the magnetic field and the
current are dephased by 𝜋.
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